PHYSICAL REVIEW E VOLUME 57, NUMBER 4 APRIL 1998

Riccati parameter modes from Newtonian free damping motion by supersymmetry
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We determine the class of damped modeshat are related to the common free damping moyldsy
supersymmetry. They are obtained by employing the factorization of Newton’s differential equation of motion
for the free damped oscillator by means of the general solution of the corresponding Riccati equation together
with Witten’'s method of constructing the supersymmetric partner operator. This procedure leads to one-
parameter families oftransient modes for each of the three types of free damping, corresponding to a
particular type of antirestoring acceleratiGadding up to the usual Hooke restoring acceleratafrthe form
a(t)=2v?/(yt+1)%y, wherey is the family parameter that has been chosen as the inverse of the Riccati
integration constant. In supersymmetric terms, they represent all those one-Riccati-parameter damping modes
having the same Newtonian free damping partner mggi€063-651X98)00604-7

PACS numbd(s): 03.20+i

The damped oscillatofDO) is a cornerstone of physics
and a primary textbook example in classical mechanics. Ly=
Schemes of analogies allow its extension to many areas of

physics where the same basic concepts occur with merely @ follows thaty. =e A2 and one can build through their

change in the meaning of the symbols. Apparently, theresuperposition the general solution ag=e A(Aet

might hardly be anything new to say about such an obvious_ Be ). Thus, for free underdamping, the general solution
case. However, in the following we would like to exhibit a ' i

. XN —pBt e
different and nice feature of damping resulting from theCan Dbe written asy,=Ae Pl cosfy—a’t+¢), where A

mathematical procedure of factorization of its differential =2v|AB| and ¢=arcco$(A~+B)/'A], whereas the over-
equation. In the past, the factorization of the DO differentialdamped general solution iBe™ #' cosh@t+¢), where A

equation(Newton’s law has been tackled by a few authors _ 5 [[AB| and ¢ = arcco§(A+B)/A]. The critical case is spe-
[1], but not in the framework that will be presented herein.cia| put well known[1], having the general solution of the
Namely, recalling that such factorizations are common t00lgype y — e~ A{(A+Bt).

in Witten's supersymmetric quantum mechariizsand im- Since, as we mentioned, the factorization given by &j.

ply particular solutiong of Riccati equations known as SUpermay not be the only one possible, let us now write the more
potentials, we would like to explore here the factoring of thegenera) factorization

DO equation by means of the general solution of the Riccati

equation, a procedure that has been used in physics by

Mielnik [3] for the quantum harmonic oscillator. In other Ngy=
words, our goal here is to exploit the nonuniqueness of the
factorization of second-order differential operators, on the
example of the classical damped oscillator. By doing this on
may hope to gain insight into the free damping motion. We
write the ordinary DO Newton’s law in the form

d
qitBly-=ay-. ®

d+f
gt (1)

d _ 2
m+g(t) y=acy, (4)

heref (t) andg(t) are two functions of time. The condition
hat Ny be identical toN leads tof(t)+g(t)=28 andg’
+fg= 8, which can be combined in the Riccati equation
42 q —f'—f2+2pf=p% (5)
B . 2
Ny—(dt2+23dt+ﬁ

y=(B*—wp)y=a%y, (1) _ _ _ _ _ _
By inspection, one can easily see that a first solution to this
equation isf(t)= 8 [g(t)=B], which is the common case
i.e., we already added A%y term on both sides in order to discussed by previous authdrs. Changing the dependent
perform the factoring. The coefficienfgds the friction con-  yariable toh(t) = f(t) — 8, we get a simpler form of the Ric-
stant per unit mass and, is the natural frequency of the cati equation, i.e.n’(t)+h?=0, with the particular solution
oscillator. The factorization h(t)=0. However, the general solution It)=1/(t+T)
=+yl(yt+1), as one can easily check. The constant of inte-
o gration T=1/y occurs as a new time scale in the problem;
EJF'B y=ay 2) see below. Therefore, there is the more general factorization
of the DO equation than Ed2):

follows, and previous authorfl] discussed the classical

d
ai P

cases of underdampingf<0), critical damping &>=0), I i Y i Y _
and overdamping&®>0) in terms of the first-order differ- ATATY= dtJr’BJr yt+1 dt+’3 yt+1 y=ay.
ential equation (6)
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FIG. 1. Initial free underdamped mode of the type=e~"*° cost (bold curvé and members of ity family of supersymmetric damping
modesy,= — e~ "I sint+y/(y+1)cost] for the following values of parameter 1, dashed curv%‘, bold dashed curvef';, solid curve.

A few remarks are in order. While the linear operator and thus

=d/dt+ B hasy. as eigenfunctions with eigenvaluesqa,

the quadratic operatoX hasy. as degenerate eigenfunc- -

tions, with the same eigenvalue®. On the other hand, the y+=< ta— Y1
new linear operator&™ and A~ do not havey. as eigen-

functions sinceA’y.=[*a+y/(yt+1)ly. and A"y.  These modes make up a one-parameter family of damping
=[*=a=-y/(yt+1)]y., although the quadratic operator ejgenfunctions that we interpret as follows. We write down
Ng=A"A" still hasy. as degenerate eigenfunctions at ei-the usual form of the Newton law corresponding to the New-

2 —
ton operatomg,

e~ pt= at_ (9)

genvaluea“. We now construct, according to the ideas of
supersymmetric quantum mechan(i2$ the supersymmetric

partner ofNg, d2 2
— —_— 2_—~=
e d 2y (dt2+2’8dt+w° t+12) Y=o (19
Nng A :az'f-zlga‘FB _(yt-i-l) . (7)

Examination of this law shows that the termyZ(yt

This second-order damping operator contains the additionaf 1)y can be interpreted as a time-dependent antirestoring
last term with respect to its initial partner, which, roughly ccelerationbecause of the minus sign in front of jpro-
speaking, is the Darboux transform tef#] of the quadratic ducing in the transient periot<1/8 the damping modes
operator. The important property of this operator is the fol-given byy above.

lowing. If y, is an eigenfunction oy, thenA~y, is an We present now separately tiyefamilies of modes cal-
eigenfunction ofN, sinceNyA yo=A"A*A"y,=A"Ngy, culated as superpositions of the mogesfor the three types
and  Ngyo=a?yo, implying Ng(ATyg))=A"Ngy, of free damping. T _

= a?(A"Yy). The conclusion is thaiy has the same type of (i) For underdampingd”<wy, let a=iw;, where ,
“spectrum” as Ny and therefore adl. The eigenfunctions =\/w02—,32. The original eigenfunction iy,=A, cosw;t

V.. can be constructed if one knows the eigenfunctipnas  +¢)e ”, while the supersymmetric family sy,

= — A (w; Sin(wit+@)+[y/(1t+1)]cost+ ¢))e Pt

S Ay — g+,8— Y ®) (i) In the case of critical dampin@zzwé, the general
Y= Y==1 4t yt+1 Y= free solution isy.=Ae P!+ Bte A, whereas the tilde solu-
1 T -
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FIG. 2. Initial free critical damping modg,=e~'(1+1t) (bold curvé and members of the correspondingamily y.=e [ — y/(yt
+1)+ (yt+1)?/4?] for the y parameter taking the following values: 1, dashed curve; 2, bold dashed curve; 4, solid curve.
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FIG. 3. Initial free overdamped mode of the tygg=e ' cosh{/5) (bold curvé and members of its supersymmetrcfamily y,

:e"(% sinh{/5)—[ y/(yt+1)]cosh{/5)) for the following values of the parameter 1, dashed curve%, bold dashed curve%, solid
curve.

tion will be ')76:[_,5\3,/()44r 1)+ (D/y?) (yt+1)%]e A Such blow-up solutions are quite well known in nonlinear
= physics. On the other hand, even the Newtonian mgges
_ st ~ are growing with time in the past or for negatiyein the
_[_Azlét(yff 1)le B_' whe_zreas y,—~A y,—[_B/(yt future (divergent and flutter instabilities are textbook knowl-
+1)]Je Py, . To find the independeny_ solution we  gq4a[5]). What we claim here is that when one starts a
write y_=z(t)y. and determine the functioa(t) from  damping-type measurement after a “mechanical” blow-up
Ngy_-=0. The result ig(t) =C(yt+ 1)%/y®, whereC is an  phenomenon, Riccati parameter modes may be present. As
arbitrary ~ constant, and therefore y_=D[(yt  Wwe said, they may also occur before a blow-up phenomenon
+1)%/y?]e”#', D being another arbitrary constant. (for negativey), an equally important case. In this situation
(iii ) For overdamping3?> wg, the initial free general so- the Riccati parameter distinguishes them from more common
lution is yo=Aoe At cosh@t+ ), whereas they solution is instability modes. Thus an extended Riccati-type parametri-

Vo= —Koefﬁt(a sinh(at+ &) —[y/(st+1)Jcosh@t+ ¢)). zation of free damping can indeed be useful. The complexi-

Plots corresponding to these cases are presented in FiQ{%c_ation of the Riccati parameter adds one more parameter to

. . ~ Riccati [ .D [ he si f th
1-3. We note that in the limiy—0 the modesy,, 4 , are e Riccati damping modes. Depending on the sign of the

. . . imaginar rt, new contributions to either damping or de-
going to the Newtonian damping modgg ; for all three abgl' ary paf, he cg butions to either damping or de
classes of free damping motion. Moreover, we placed our-Sta llization of the modes occur. . .

' : In summary, what we have obtained here are Riccati pa-

selves herein in the well-behaved regime of motion, i.e., for . . )
' rameter families of damping modes related to the Newtonian
time and parameter ranges where the modes do not gro

with time and their amplitudes are finite. However, from theWee damping ones by means of Witten's supersymmetric

) ; - scheme and the general Riccati solution.
point of view of they parameter the modeg are always
singular, i.e., they blow up at some negative time moment This work was partially supported by CONACyYT Project
for positive y and at some positive instant for negatiye  No. 4868-E9406.

There is a difficulty in this case since/,=A"y,
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