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Riccati parameter modes from Newtonian free damping motion by supersymmetry

Haret C. Rosu and Marco A. Reyes
Instituto de Fı´sica de la Universidad de Guanajuato, Apartado Postal E-143, Leo´n, Guanajuato, Mexico

~Received 31 July 1997!

We determine the class of damped modesỹ that are related to the common free damping modesy by
supersymmetry. They are obtained by employing the factorization of Newton’s differential equation of motion
for the free damped oscillator by means of the general solution of the corresponding Riccati equation together
with Witten’s method of constructing the supersymmetric partner operator. This procedure leads to one-
parameter families of~transient! modes for each of the three types of free damping, corresponding to a
particular type of antirestoring acceleration~adding up to the usual Hooke restoring acceleration! of the form

a(t)52g2/(gt11)2 ỹ , whereg is the family parameter that has been chosen as the inverse of the Riccati
integration constant. In supersymmetric terms, they represent all those one-Riccati-parameter damping modes
having the same Newtonian free damping partner mode.@S1063-651X~98!00604-7#

PACS number~s!: 03.20.1i
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The damped oscillator~DO! is a cornerstone of physic
and a primary textbook example in classical mechan
Schemes of analogies allow its extension to many area
physics where the same basic concepts occur with mere
change in the meaning of the symbols. Apparently, th
might hardly be anything new to say about such an obvi
case. However, in the following we would like to exhibit
different and nice feature of damping resulting from t
mathematical procedure of factorization of its different
equation. In the past, the factorization of the DO differen
equation~Newton’s law! has been tackled by a few autho
@1#, but not in the framework that will be presented here
Namely, recalling that such factorizations are common to
in Witten’s supersymmetric quantum mechanics@2# and im-
ply particular solutions of Riccati equations known as sup
potentials, we would like to explore here the factoring of t
DO equation by means of the general solution of the Ric
equation, a procedure that has been used in physics
Mielnik @3# for the quantum harmonic oscillator. In othe
words, our goal here is to exploit the nonuniqueness of
factorization of second-order differential operators, on
example of the classical damped oscillator. By doing this o
may hope to gain insight into the free damping motion. W
write the ordinary DO Newton’s law in the form

Ny[S d2

dt2
12b

d

dt
1b2D y5~b22v0

2!y5a2y, ~1!

i.e., we already added ab2y term on both sides in order t
perform the factoring. The coefficient 2b is the friction con-
stant per unit mass andv0 is the natural frequency of th
oscillator. The factorization

S d

dt
1b D S d

dt
1b D y5a2y ~2!

follows, and previous authors@1# discussed the classica
cases of underdamping (a2,0), critical damping (a250),
and overdamping (a2.0) in terms of the first-order differ-
ential equation
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Ly[S d

dt
1b D y656ay6 . ~3!

It follows that y65e2bt6at and one can build through the
superposition the general solution asy5e2bt(Aeat

1Be2at). Thus, for free underdamping, the general soluti
can be written asyu5Ãe2bt cos(A2a2t1f), where Ã

52AuABu and f5arccos@(A1B)/Ã#, whereas the over-
damped general solution isÃe2bt cosh(at1f), where Ã

52AuABu andf5arccos@(A1B)/Ã#. The critical case is spe
cial but well known@1#, having the general solution of th
type yc5e2bt(A1Bt).

Since, as we mentioned, the factorization given by Eq.~2!
may not be the only one possible, let us now write the m
general factorization

Ngy[S d

dt
1 f ~ t ! D S d

dt
1g~ t ! D y5a2y, ~4!

wheref (t) andg(t) are two functions of time. The condition
that Ng be identical toN leads to f (t)1g(t)52b and g8
1 f g5b, which can be combined in the Riccati equation

2 f 82 f 212b f 5b2. ~5!

By inspection, one can easily see that a first solution to
equation isf (t)5b @g(t)5b#, which is the common case
discussed by previous authors@1#. Changing the dependen
variable toh(t)5 f (t)2b, we get a simpler form of the Ric
cati equation, i.e.,h8(t)1h250, with the particular solution
h(t)50. However, the general solution ish(t)51/(t1T)
5g/(gt11), as one can easily check. The constant of in
gration T51/g occurs as a new time scale in the proble
see below. Therefore, there is the more general factoriza
of the DO equation than Eq.~2!:

A1A2y[S d

dt
1b1

g

gt11D S d

dt
1b2

g

gt11D y5a2y.

~6!
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FIG. 1. Initial free underdamped mode of the typeyu5e2t/10 cost ~bold curve! and members of itsg family of supersymmetric damping
modesỹu52e2t/10@sin t1g/(g11)cost# for the following values of parameterg: 1, dashed curve;12 , bold dashed curve;14 , solid curve.
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A few remarks are in order. While the linear operatorL
5d/dt1b hasy6 as eigenfunctions with eigenvalues6a,
the quadratic operatorN has y6 as degenerate eigenfunc
tions, with the same eigenvaluea2. On the other hand, the
new linear operatorsA1 and A2 do not havey6 as eigen-
functions sinceA1y65@6a1g/(gt11)#y6 and A2y6

5@6a2g/(gt11)#y6 , although the quadratic operato
Ng5A1A2 still has y6 as degenerate eigenfunctions at e
genvaluea2. We now construct, according to the ideas
supersymmetric quantum mechanics@2#, the supersymmetric
partner ofNg ,

Ñg5A2A15
d2

dt2
12b

d

dt
1b22

2g2

~gt11!2 . ~7!

This second-order damping operator contains the additio
last term with respect to its initial partner, which, rough
speaking, is the Darboux transform term@4# of the quadratic
operator. The important property of this operator is the f
lowing. If y0 is an eigenfunction ofNg , then A2y0 is an
eigenfunction ofÑg sinceÑgA2y05A2A1A2y05A2Ngy0

and Ngy05a2y0 , implying Ñg(A2y0)5A2Ngy0

5a2(A2y0). The conclusion is thatÑg has the same type o
‘‘spectrum’’ as Ng and therefore asN. The eigenfunctions
ỹ 6 can be constructed if one knows the eigenfunctionsy6 as

ỹ 65A2y65S d

dt
1b2

g

gt11D y6 ~8!
-
f

al

-

and thus

ỹ 65S 6a2
g

gt11De2bt6at. ~9!

These modes make up a one-parameter family of damp
eigenfunctions that we interpret as follows. We write dow
the usual form of the Newton law corresponding to the Ne
ton operatorÑg ,

S d2

dt2
12b

d

dt
1v0

22
2g2

~gt11!2D ỹ50. ~10!

Examination of this law shows that the term 2g2/(gt

11)2 ỹ can be interpreted as a time-dependent antiresto
acceleration~because of the minus sign in front of it! pro-
ducing in the transient periodt<1/b the damping modes
given by ỹ above.

We present now separately theỹ families of modes cal-
culated as superpositions of the modesỹ 6 for the three types
of free damping.

~i! For underdampingb2,v0
2, let a5 iv1 , where v1

5Av0
22b2. The original eigenfunction isyu5Ãu cos(v1t

1f)e2bt, while the supersymmetric family is ỹ u

52Ãu„v1 sin(v1t1f)1@g/(gt11)#cos(v1t1f)…e2bt.
~ii ! In the case of critical dampingb25v0

2, the general
free solution isyc5Ae2bt1Bte2bt, whereas the tilde solu-
FIG. 2. Initial free critical damping modeyc5e2t(11t) ~bold curve! and members of the correspondingg family ỹc5e2t@2g/(gt
11)1(gt11)2/g2# for the g parameter taking the following values: 1, dashed curve; 2, bold dashed curve; 4, solid curve.
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FIG. 3. Initial free overdamped mode of the typey05e2t cosh(t/5) ~bold curve! and members of its supersymmetricg family ỹ0

5e2t
„

1
5 sinh(t/5)2@g/(gt11)#cosh(t/5)… for the following values of the parameterg: 1, dashed curve;12 , bold dashed curve;14 , solid

curve.
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tion will be ỹ c5@2Ag/(gt11)1(D/g2)(gt11)2#e2bt.
There is a difficulty in this case sinceỹ 15A2y1

5@2Ag/(gt11)#e2bt, whereas ỹ 25A2y25@B/(gt

11)#e2bt} ỹ 1 . To find the independentỹ 2 solution we
write ỹ 25z(t) ỹ 1 and determine the functionz(t) from
Ñg ỹ 250. The result isz(t)5C(gt11)3/g3, whereC is an
arbitrary constant, and therefore ỹ 25D@(gt
11)2/g2#e2bt, D being another arbitrary constant.

~iii ! For overdampingb2.v0
2, the initial free general so

lution is y05Ã0e2bt cosh(at1f), whereas theg solution is
ỹ 052Ã0e2bt

„a sinh(at1f)2@g/(gt11)#cosh(at1f)….
Plots corresponding to these cases are presented in

1–3. We note that in the limitg→0 the modesỹv,b,g are
going to the Newtonian damping modesyv,b for all three
classes of free damping motion. Moreover, we placed o
selves herein in the well-behaved regime of motion, i.e.,
time and parameter ranges where the modes do not g
with time and their amplitudes are finite. However, from t
point of view of theg parameter the modesỹ are always
singular, i.e., they blow up at some negative time mom
for positive g and at some positive instant for negativeg.
s

,

gs.

r-
r
w

t

Such blow-up solutions are quite well known in nonline
physics. On the other hand, even the Newtonian modesyv,b

are growing with time in the past or for negativeb in the
future ~divergent and flutter instabilities are textbook know
edge @5#!. What we claim here is that when one starts
damping-type measurement after a ‘‘mechanical’’ blow-
phenomenon, Riccati parameter modes may be presen
we said, they may also occur before a blow-up phenome
~for negativeg!, an equally important case. In this situatio
the Riccati parameter distinguishes them from more comm
instability modes. Thus an extended Riccati-type parame
zation of free damping can indeed be useful. The comple
fication of the Riccati parameter adds one more paramete
the Riccati damping modes. Depending on the sign of
imaginary part, new contributions to either damping or d
stabilization of the modes occur.

In summary, what we have obtained here are Riccati
rameter families of damping modes related to the Newton
free damping ones by means of Witten’s supersymme
scheme and the general Riccati solution.
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